Product diversity and regulation of type II fatty acid synthases.
نویسندگان
چکیده
Fatty acid biosynthesis is catalyzed in most bacteria by a group of highly conserved proteins known as the type II fatty acid synthase (FAS II) system. FAS II has been extensively studied in the Escherichia coli model system, and the recent explosion of bioinformatic information has accelerated the investigation of the pathway in other organisms, mostly important human pathogens. All FAS II systems possess a basic set of enzymes for the initiation and elongation of acyl chains. This review focuses on the variations on this basic theme that give rise to the diversity of products produced by the pathway. These include multiple mechanisms to generate unsaturated fatty acids and the accessory components required for branched-chain fatty acid synthesis in Gram-positive bacteria. Most of the known mechanisms that regulate product distribution of the pathway arise from the fundamental biochemical properties of the expressed enzymes. However, newly identified transcriptional factors in bacterial fatty acid biosynthetic pathways are a fertile field for new investigation into the genetic control of the FAS II system. Much more work is needed to define the role of these factors and the mechanisms that regulate their DNA binding capability, but there appear to be fundamental differences in how the expression of the pathway genes is controlled in Gram-negative and in Gram-positive bacteria.
منابع مشابه
The type I fatty acid and polyketide synthases: a tale of two megasynthases.
This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production ...
متن کاملComprehensive Analysis of Polyketide Synthase Families
Polyketides (PKs) are a class of natural products (secondary metabolites) from bacteria, fungi, and plants, including many clinically important drugs such as tetracycline, daunorubicin, erythromycin, rapamycin and lovastatin [1, 4]. They have a large diversity of biological activities and pharmacological properties such as antibiotic, anticancer, antifungal, antiparasitic, cytostatic, and immun...
متن کاملThe chalcone synthase superfamily of type III polyketide synthases.
This review covers the functionally diverse type III polyketide synthase (PKS) superfamily of plant and bacterial biosynthetic enzymes. from the discovery of chalcone synthase (CHS) in the 1970s through the end of 2001. A broader perspective is achieved by a comparison of these CHS-like enzymes to mechanistically and evolutionarily related families of enzymes, including the type I and type II P...
متن کاملA Single Sfp-Type Phosphopantetheinyl Transferase Plays a Major Role in the Biosynthesis of PKS and NRPS Derived Metabolites in Streptomyces ambofaciens ATCC23877
The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is ...
متن کاملTailoring enzymes acting on carrier protein-tethered substrates in natural product biosynthesis.
Carrier proteins (CPs) are integral components of fatty acid synthases, polyketide synthases, and nonribosomal peptide synthetases and play critical roles in the biosynthesis of fatty acids, polyketides, and nonribosomal peptides. An emerging role CPs play in natural product biosynthesis involves tailoring enzymes that act on CP-tethered substrates. These enzymes provide a new opportunity to en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry and cell biology = Biochimie et biologie cellulaire
دوره 82 1 شماره
صفحات -
تاریخ انتشار 2004